加州大学洛杉矶分校医学院研究团队开发出一个计算机程序,能够从单个血液样品中检测出多种癌症,并能具体定位原发灶癌组织的器官位置,可用于癌症筛查和早期诊断。相关研究成果发表在近日出版的生物学顶尖杂志《Genome Biology》上。
研究人员表示该程序的工作机制是在患者血液中寻找自由流动的癌症DNA中的特殊表观模式,并将其与数据库中的不同癌症类型的表观遗传数据相比较。因为来自肿瘤细胞的DNA在癌症早期阶段会进入血液,所以对疾病的早期检测提供了独特的标靶。该团队建立了表观遗传甲基化标志物的数据库,这些标志物在许多类型的癌症中都很常见,并对起源于特定组织的癌症具有特异性。他们还汇编了非癌症样本的甲基化模式,从而拥有比较癌症样本的基线。
研究人员利用乳腺癌、肝癌和肺癌患者的血液样本对该程序进行测试,并与另外两种常用的机器学习方法进行了比较。结果显示,另外两种方法的总错误率(产生假阳性的可能性)分别为0.646和0.604,而新程序的这一数字低为0.265。值得一提的是,该组受测人群中有30人患有早期癌症,该程序能够检测出80%的病例。
姜靖