第A8版:纵览 上一版3
 
版面导航

第A1版
头版

第A2版
要闻

第A3版
视点
 
标题导航
湖南在线 | 版面导航 | 标题导航 |
2024年10月09日 星期三
下一篇 4 放大 缩小 默认
诺贝尔物理学奖跟图灵奖“抢饭碗”?
两名科学家因机器学习方面的贡献分享诺贝尔物理学奖,他们的研究让AI更聪明

    10月8日,在瑞典斯德哥尔摩举行的2024年诺贝尔物理学奖公布现场,屏幕显示奖项得主美国普林斯顿大学的约翰·霍普菲尔德和加拿大多伦多大学的杰弗里·欣顿。

    新华社 图

  让人工智能学会“智能”,能够模拟人类的记忆和学习过程。今年的诺贝尔物理学奖两名获奖者,使用物理学工具,为人工智能的发展奠定了理论基础。

  瑞典皇家科学院10月8日宣布,将2024年诺贝尔物理学奖授予美国科学家约翰·霍普菲尔德和英国裔加拿大科学家杰弗里·欣顿,以表彰他们在使用人工神经网络的机器学习方面的基础性发现和发明。

  强大应用

  他俩接力深耕人工神经网络几十年

  远在人工智能成为今天的科技热词之前,这两名科学家从20世纪80年代起就在人工神经网络领域做出了重要工作。这项技术最初的灵感来自大脑的结构。就像大脑中大量神经元通过突触相连一样,人工神经网络由大量的“节点”通过“连接”组成。每个节点就像一个神经元,而连接的强弱则类似于突触的强度,决定了信息传递的效果。

  1982年,美国科学家约翰·霍普菲尔德创建了一种用于机器的联想记忆方法,提出了一种革命性的网络结构,被称为“霍普菲尔德网络”。这个网络能够存储多个模式(比如图像),并且在面对不完整或有噪声的输入时,能够重构出最相似的模式。

  英国裔加拿大科学家杰弗里·欣顿在此基础上更进一步,他希望机器能像人类一样自主学习和分类信息,于1985年和同事提出了“玻尔兹曼机”的网络模型,这个名字源于19世纪物理学家路德维希·玻尔兹曼的方程。该模型通过统计物理学中的玻尔兹曼分布来识别数据中的特征,成为了现代深度学习网络的基础。欣顿的研究继续推进,导致了当前机器学习领域爆炸式的发展。

  “意外”斩获

  诺贝尔物理学奖跟图灵奖“抢饭碗”?

  10月8日宣布的2024年诺贝尔物理学奖“意外”垂青机器学习,让多个诺奖预测集体“翻车”,就连获奖者之一的杰弗里·欣顿也坦言自己“完全没想到”。看似不属于传统物理学任何一个分支领域的成果斩获诺奖,让不少学者开玩笑说诺贝尔物理学奖在跟计算机界的图灵奖“抢饭碗”。

  事实上,机器学习领域的元老级人物约翰·霍普菲尔德和杰弗里·欣顿斩获诺奖,如诺奖官方公告所说正是因为“运用物理学的工具”。今年的诺贝尔物理学奖不仅是对两名科学家成就的肯定,更是极大强调了跨学科研究的重要性,向人们展示了物理学的深刻洞见与计算机科学创新“碰撞”可以产生的巨大能量。

  当前人们谈论人工智能时,经常指的是使用人工神经网络的机器学习。诺贝尔物理学委员会秘书乌尔夫·丹尼尔松对记者强调,人工神经网络在物理学中的研究和应用已经持续了相当长一段时间,本次诺贝尔物理学奖并非颁发给过去几年人工智能的发展,不是针对大语言模型或类似的东西,而是针对基础发明。

  ■综合新华社

下一篇 4 放大 缩小 默认
  © 版权所有 湖南日报报业集团 
copyright © 2008 VOC.COM.CN, Geo Info. All Rights Reserved
互联网新闻信息服务许可证:4312006003 经营许可证:湘ICP证010023 ICP备案号:湘ICP备10011883号